Risk-adjusted probability measures in portfolio optimization with coherent measures of risk
نویسندگان
چکیده
We consider the problem of optimizing a portfolio of n assets, whose returns are described by a joint discrete distribution. We formulate the mean–risk model, using as risk functionals the semideviation, deviation from quantile, and spectral risk measures. Using the modern theory of measures of risk, we derive an equivalent representation of the portfolio problem as a zero-sum matrix game, and we provide ways to solve it by convex optimization techniques. In this way, we reconstruct new probability measures which constitute part of the saddle point of the game. These risk-adjusted measures always exist, irrespective of the completeness of the market. We provide an illustrative example, in which we derive these measures in a universe of 200 assets and we use them to evaluate the market portfolio and optimal risk-averse portfolios. 2007 Elsevier B.V. All rights reserved.
منابع مشابه
Using MODEA and MODM with Different Risk Measures for Portfolio Optimization
The purpose of this study is to develop portfolio optimization and assets allocation using our proposed models. The study is based on a non-parametric efficiency analysis tool, namely Data Envelopment Analysis (DEA). Conventional DEA models assume non-negative data for inputs and outputs. However, many of these data take the negative value, therefore we propose the MeanSharp-βRisk (MShβR) model...
متن کاملOptimal Portfolio Allocation based on two Novel Risk Measures and Genetic Algorithm
The problem of optimal portfolio selection has attracted a great attention in the finance and optimization field. The future stock price should be predicted in an acceptable precision, and a suitable model and criterion for risk and the expected return of the stock portfolio should be proposed in order to solve the optimization problem. In this paper, two new criterions for the risk of stock pr...
متن کاملOptimal Portfolio Selection for Tehran Stock Exchange Using Conditional, Partitioned and Worst-case Value at Risk Measures
This paper presents an optimal portfolio selection approach based on value at risk (VaR), conditional value at risk (CVaR), worst-case value at risk (WVaR) and partitioned value at risk (PVaR) measures as well as calculating these risk measures. Mathematical solution methods for solving these optimization problems are inadequate and very complex for a portfolio with high number of assets. For t...
متن کاملFeasibility of Portfolio Optimization under Coherent Risk Measures
It is shown that the axioms for coherent risk measures imply that whenever there is an asset in a portfolio that dominates the others in a given sample (which happens with finite probability even for large samples), then this portfolio cannot be optimized under any coherent measure on that sample, and the risk measure diverges to minus infinity. This instability was first discovered on the spec...
متن کاملPortfolio Optimization Based on Cross Efficiencies By Linear Model of Conditional Value at Risk Minimization
Markowitz model is the first modern formulation of portfolio optimization problem. Relyingon historical return of stocks as basic information and using variance as a risk measure aretow drawbacks of this model. Since Markowitz model has been presented, many effortshave been done to remove theses drawbacks. On one hand several better risk measures havebeen introduced and proper models have been ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European Journal of Operational Research
دوره 191 شماره
صفحات -
تاریخ انتشار 2008